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Numerical solutions of relativistic hydrodynamic equations are
obtained with essentially non-oscillatory (ENO) finite differencing
schemes. The method is explicit, conservative, consistent with the
entropy condition, and high-order accurate in space and time. The
present implementation is applicable to the most general, three-
dimensional problems with an arbitrary equation of state. Numerical
experiments, including computations of multi-dimensional flows,
demonstrate that the method delivers sharp, non-oscillatory shock
transitions without sacrificing high resolution of the smooth re-
gions. This extends results already established for the Euler gas
dynamics to the relativistic regime, suggesting the usefulness of
ENO schemes for modetling relativistic nuclear collisions. @ 1995
Academic Press, Inc, :

I. INTRODUCTION

Over the past decade, we have seen an increase of interest
in computational relativistic fluid dynamics, stimulated by the
ubtrarelativistic nuclear collision experiments [{}. Presently,
heavy nuclel are collided at kinetic energies as high as 200
GeV/A, corresponding 1o impact velocities within 107 of the
speed ol light, Since an exact theory deseribing such processes
is not available, one has o resort o phenomenological models
in order to obtain some testable predictions. An entire class of
approaches takes advantage of the fact that large numbers of
particles are involved. Instead of following the particles individ-
ually, such models concern themselves only with their resulting
collective behaviour.

Hydrodynamic models are one example of such an approach.
Here. the nuclei are considered as two droplets of a fluid whose
properties are governed by a nuclear equation of state. The
collision itself is then described in the language of relativistic
hydrodynamics as a solution to an initial value problem. After
the nuclei collide, compression shock waves form in the nuclear
matter, and this presents a challenge for the numerical solution.
In contrast to their non-relativistic counterparts, the relativistic
equations are much more sensitive to overshoots produced by
numerical oscillations. One apparent reason for that is the pres-
ence of the Lorentz factor, (1 — v?)7'"2, in the equations. There-
fore, non-oscillatory handling of discontinuities is essential.

Traditionally, only particle-in-cell algorithms | 2] or flux cor-

rected transport methods [3, 4] {more recently [5]) have been
applied. Unfortunately, these approaches are al best second-
order accurate, and the oscillalions are suppressed only at the
cost of excessive smearing. The loss of resolution necessitales
fine grids, increasing the demand both on the storage space and
the computational time. As a result, three-dimensional codes
may require a supercomputer to execute. What is needed is a
numerical mecthod which could deliver the non-oscillatory
shock transitions while retaining high resolution.

One possible answer lies in the high-order accurate, essen-
tially non-oscillatory {ENQ) schemes. In this article, we wish
to present their relativistic implementation. ENO schemes were
designed as numerical approximations for hyperbolic systems
of conservation laws. [nstead of adaptively refining the compu-
tational grid near discontinuities, Harten, Engquist, Osher, and
Chakravarthy [6, 7} proposed using a moving, adaptive stencil,
which extracts the information about the flow from smooth
regions. The algorithm generalized Godunov’s scheme to an
arbitrary order of accuracy in space and time. The ENO require-
ment relaxed the more siringent total variation diminishing
(TYD) condition by allowing the presence of small oscillations
on the order ol trimcation crror, However, oscillations with a
nmagnitude proportional to the size of the jump, commonly
referred to as a Gibbs phenomenon, will not appear. Apart from
correctly capturing the shocks, the scheme guarantees high
resolution of the smooth regions of the flow. Even though
mathematically pleasing, the algerithm was rather involved
and complicated to program. It employed a cell reconstruction
scheme o update the point values, and a Lax—Wendroff type
time discretization, both of which become awkward to use in
multi-space-dimensional problems [8, 9].

An efficient implementation was proposed by Shu and Osher
[10, 1], who applied the moving stencil idea directly to the
point values of the fluxes. They have also introduced convenient
TVD Runge—Kutta type time discretizations, A comparison
of these two approaches, termed ‘“‘finite volume’’ and **finite
differencing,”” can be found in Ref. [12]. The simplified, flux-
based ENO schemes have been successfully tested on scalar
models [10], Euler gas dynamics equations [ 11], Navier—Stokes
equations [13], and the equations for the incompressible flow
114].
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It appears that these schemes should prove to be a viable
alternative for the relativistic hydrodynamics also. As we shall
see later, our results indicate that the high-order schemes can
resolve most of the structures in the flow, without the need for
fine or adaptive grids. At the same time, even though shock
smearing i1s very mild, no spurious oscillations appear near
the discontinuities. As a result, many calculations of interest,
including three-dimensional ones, can be performed on most
present-day workstations. This makes ENQ algorithms ex-
tremely attractive.

In this article, we address mainly the general aspects of
using the ENO method for initial value problems in relativistic
hydrodynamics with an arbitrary equation of state. Applications
to the relativistic nuclear collisions will be presented in a sepa-
rate work. Because of the adaptiveness of the stencil, ENO
schemes are highly nonlinear {15], and hence it is very difficult
to obtain theoretical results regarding the stability and overall
performance. Only through numerical experiments can one gain
some confidence in, as well as uncover the limitations of, the
method. To that aim, we present results of several numerical
tests, including an actual three-dimensional calculation of a
nuclear collison.

The paper is organised as follows. In the next section, the
equations of relativistic hydrodynamics are introduced. An im-
portant part of their numerical solution is the reconstruction of
local rest frame quantities. A simple method, which involves
solving at most one non-linear equation, is given in Section
II1. The consistency conditions for the relativistic variabies are
also discussed there. In Section 1V, we briefly explain the
general principle of the ENO schemes. The characteristic de-
composition, required by the numerical scheme, is presented
in Section V., The remaining, miscellaneous issues associated
with the implementation are discussed in Section V1. The last
section contains the results of numerical experiments, after
which a brief conclusion is given.

II. RELATIVISTIC HYDRODYNAMICS

Throughout this article, we will be using units where the
speed of light is unity and, following the usual convention, we
reserve the letter ¢ for the speed of sound. The equations of the
relativistic hydredynamics express the conservation of energy,
momentum, and the baryon number.! They are usually written
in the compact, manifest-covariant form [16]

8,74 =0, dn" =0 (2.1)
Here, for the perfect fluid, 7** = U*U"(e + p) — g*'p, is the
energy-momentum tensor, and n* = U"n is the 4-flux of baryon
number. We have introduced the 4-velocity UY = ¥(1, v, v,

! There may be additional conserved quantities, such as the electric charge,
lepton family numbers, etc., but we shall not discuss these more general
cases here.
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vy), withy = (1 — v) " and v = (v} + v3 + v} and the
Lorentz metric g** = diag(l, — 1, —1, —1). The system is
closed by the equation of state, p = p{g, r). Here p is the
pressure, and & and n, respectively, are the rest frame energy
and the baryon number density.

For our purposes, it will be convenient to rewrite these equa-
tions in the form of a system of conservation laws

LI KLU (2.2)

at = dxg
In general, w = (s, ..., #,) is the vector of densities of the
conserved variables, and % = (¥, .., /%) is the vector of
their fluxes in the kth spatial direction. Let us write down u
and f® for the present case. We introduce the densities of
reiativistic energy

E=vye+p)—p (2.3a)
momentum
M, = vpyi(e + p) (2.3b)
and the baryon density
N=yn. (2.3¢)
Define further the energy flux
E=vilE+tp)=M; (2.4a)
momentum flux
My = v, M; + §;p (2.4h)
and the baryon number fiux
Ny =N (2.4¢)

here 8; = 1 for i = j, and zero otherwise. One can verify that
Eqgs. (2.1) take on the form (2.2), with v = (E, M), M,, M,,
N) and f@ = (%j, MU, MZ}; MS}s N;)

III, FLUX UPDATE

The structure of the fluxes (2.4) embodies the main difficolty
in the relativistic hydrodynamics. The flux dependence on the
conserved densities, £%(u), is implicit, through the velocity and
the local rest frame densities € and n. A discretized version of
Eqgs. (2.2} wili allow us to compute the values of the conserved
densities, £, M;, and N, at time ¢ + At from the values of the
conserved densities and fluxes at time f. However, in order to
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update the fluxes, we need first the new values of e, v;, and n.
They may be found from (2.3) in the following way.
Suppose first that N ¥ (). Equation (2.3c) gives
1 2

= - a=t~ L

- - (3.1

By combining (2.3a) and (2.3b) we find

e=E— VuIM? (3.2)

and

z M2

T E ey ¢

Substitute (3.1) into (3.2), then substitute the result into (3.3),
and finally substitute that result into (2.3¢) to give

M?.
P=NE L - , (34
" { £+ p(E = Va0 = i) nznvz),n)]z} G4

This equation can be solved numerically for ». Having found
n, we compute € from (3.2) and (3.1)

e=E— VMYl - n*INY (3.5

and finally the velocity components as

M;

v, = m (36)

In the case N = 0, which by Eq. (2.3¢) implies n = 0, we
substitute Eq. (3.2) into (3.3) to give

MZ
2 — .
Y TIE+ p(E - Vo, OF

(3.7)

We solve this equation numerically for v, then use (3.2) to get
g, and finally (3.6) to give the velocity components.

We note that the reconstruction of &, v;, and # from E, M,,
and N is unique. indeed, suppose that there are two solutions,
g, v, nand &', vj, n'. One can always transform into a local
rest frame, where M; = (. Such a transformation has no effect
on the invariant &€ and n. Equation {2.3b) then implies that the
rest frame velocity is zero, which in turn, by (2.3c} and then
(2.3a), implies n = n’ and e = &'

On the other hand, there may exist unphysical, mutually
incompatible values of £, M;, and N, such that Eqs. {2.3) cannot
be satisfied for any &, v;, and n. Even though ENO schemes
guarantee the absence of the zeroth-order oscillations, smaller
oscillations and thus non-physical overshoots, might stil] appear
in principle. For this reason, the algorithm must include provis-
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ions to handle such events. In practice, these non-physical
overshools are extremely rare with ENO schemes.

With the non-relativistic Euler gas dynamics, the consistency
condition is straightforward; the energy and mass densities must
be positive. In the relativistic regime, the physical domain of
the allowed values of energy, momentum, and baryon density
is more complicated, as two additional constraints emerge. The
first one expresses the causality fimit on the allowed signal
speed, v* < 1. The second constraint results from the equiva-
lence of mass and energy. In relativistic thermodynamics, the
rest mass of the gas constituents is included in the internal
energy. Hence, even at zero temperature, we have & >
gg(n) > 0, where gy(n) is the ground-state energy density (de-
fined implicitly by T(e, n) = 0). We remark that the baryon
density—in contrast to the mass density—may be negative,
corresponding to antimatter. However, on physical grounds we
expect that an initial state with positive n everywhere (which
we shall always assume) cannot develop into a state where
there is a region with n < 0 (no spontaneous matter-antimatter
separation). Thus when a negative & appears in a numerical
approximation, it also indicates an overshoot.

As a practical matter, the consistency check may be done in
four states: (1} Is it N = 07 (2) Does (3.4) have a solution
within the domain 0 = » = N? (3) Compute € by (3.5). Is it
g = g(n)? (4) Compute v; by (3.6). Is it v < 1? If, at any
stage, the test fails, we do not proceed to the next stage and
we terminate the computation. At stage 2, we also have to
ensure that no domain error occurs in the course of solving
(3.4). This more technical issue will be addressed in Section VL.

IV. ENO SCHEMES

Let us now briefly describe the numerical algorithm. For the
details and proofs we refer to theroriginal works [6, 7, 10, 11].
For simplicity, we start with an initial value problem for a one-
dimensional scalar conservation law

ou , 9

_ O,
ar ax

ulx, 0) = uy(x). {4.1)

On a regular computational mesh, x; = j Ax, t, = n At, denote
the numerical approximation to u(x;, t,) as uf. ENO methods
belong to the class of conservative schemes, for which the
explicit (time forward) version reads

At » 2
uftt = uj Ax Fleir = fian). “@2)

Here, we assume stability under a Courant—Friedrichs—Lewy
(CFL) restriction, At/Ax < C/|f'], for a suitable C. The numeri-
cal flux functionf}k 1" “———f(u;‘_k, vy g1 ) 1S Consistent with the
physical flux in the sense f(u, o ) = flu).

In that case, the Lax-Wendroff theorem [17] ensures that,
if the numerical approximation converges boundedly almost
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everywhere, its limit is the weak solution of (4.1). In other
words, the integral conservation law will be satisfied across
the discontinuities, as expressed by the Rankine—Hugoniot
condition [18). On the other hand, the theorem does not
guarantee that the numerical approximation will always con-
verge to the physical solution for which the entropy increases
across the shock. It is well known that the weak solutions
to (4.1) are not unique [18]. The entropy condition must be
ensured separately.

A simple way to construct numerical flux functions is by
decomposing the physical fux into positive and negative speed
components, f = f* + f~ with f*' > 0, and f~' < 0, where
the prime denotes a derivative with respect to 4. The numerical
fluxes are first constructed separately for f* and f~, and in the
end one puts fﬁ_m fﬁ,m + fﬁ,p For an rth order accurate
scheme, the values f,wz are determined from an (r — 1)th order
interpolation polynomial of f* on an adaptively chosen r-point
stencil around x;.

The following point lies at the heart of the ENO schemes;
the stencil selection is based on the direction of the signal
velocity and local smoothness. The stencil is built up in an
inductive manner. Its initial point is chosen so as to achieve
the proper upwinding, ie., x; tor f* and x;,, for f~. Then,
at each inductive step, & new point is added to the existing
stencil, where a choice has to be made between extending
the stencil to the left or to the right. The selection picks
the one on which the flux is smoother, in the sense of
difference tables. To choose the next point to be added to
an existing k-point stencil, one compares the absolute magni-
tudes of the kth undivided differences of the flux, on the
two candidate stencils.

For the decomposition, we always use the Lax—Friedrichs
building blocks, f~{u) = § (f(u) = au), where @ > max|f"(u)].
We shall denote such a scheme, involving a global o, as ENO-
LF. The amount of numerical viscosity may be reduced by
constructing the building blocks locally, where for each j we
define a local set f7 = § (ff & ajpu) fori =j — k, ., j +
k + 1, with

@z = max [f (). (4.3)

S

The stencil selection and polynomial interpolation are then
applied at each point to its local set {f;°}. The resuiting local
LF scheme will be denoted as ENO-LLF.

The numerical flux construction is then combined with the
multi-step TVD Runge—Kutta time discretization introduced in
Ref, (10]. As a vesult, we obtain an explicit scheme which
has a high-order accuracy in space and time. While a general
proof of stability is not available (for the third and
higher order schemes), all the numerical experiments suggest
that the resulting schemes are stable and satisfy the entropy
condition.

The generalisation to systems (2.2) follows the characteristic
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projection idea due to Roe [19]. Define the Jacobi matrix,
A = af/om, and the matrix of its right eigenvectors, R, such
that A = R™!AR is diagonal. The systems for which A is
diagonalizable and has real eigenvalues are called hyper-
bolic Denote further the values of AR, and A at u =
z (u; + w;y) by a suffix j + 3. At each point, we project
the variables and fluxes onto the local characteristic space,
OUL,- = Rf;]l,'gll,' and @; = Rj—.}.llfzfj, fori = j - k, ...,j + k +
1. In terms of these characteristic fields, the equations
locally decoupte, and we are in a position to apply the
scheme separately to each of the characteristic fields. The
role of f" in the construction of the Lax~Friedrichs blocks
is now played by the corresponding eigenvalues of A. We
may set F; = {F; = KAU,), where K is a diagonal, compo-
nent-wise, global major of A. Alternatively, we may define
K. (/2 locally, in lieu of (4.3). Having constructed the nu-
merical fluxes for the characteristic variables, &, we
carry out the inverse transformation and obtain the namer-
ical flux functions for the original physical components as
fﬁ];z = Rn.F J*j,,l,z The scheme will be denoted as CH-
ENO-LF, and its local version as CH-ENQ-LLF (CH for
characteristic).

A somewhat simpler way is to apply the scheme
directly on the components, with building blocks £={u)
= 3(f(u) = «u). Here the matrix « is chosen such that
the eigenvalues of the Jacobi matrices af*/du and of /
an are, respectively, positive and negative, One possible
choice is @ = RKR™!, with K as above. Again, a local
version with an a2 is also possible, and we end up
with two algorithms, CW-ENO-LF and CW-ENO-LLF
(CW for component-wise). Despite the simplicity of im-
plementation and computational speed of the CW
method, we shall see that the CH method usually gives
better results, especially for higher orders, and is there-
fore preferable.

The main advantage of the flux-based ENO algorithms
is the relative case to implement them in multi-dimen-
sions: the scheme is simply applied separately to the
fluxes for each of the directions, f), When constructing
the stencils, one computes the difference table for the
particular direction, keeping the remaining variables
fixed. We stress that this is »not the usual operator
splitting method. In the time-update step, the difference
expressions for all the fluxes appear on the right-hand
side simultaneously.

Y. CHARACTERISTIC DECOMPOSITION

For the characteristic projections we need to diagonalize
the Jacobi matrices of®/du. The algebraic calculations are
straightforward, but tedious, especially in multi-dimensions.
They can be carried out using, for example, the symbolic
algebra systern REDUCE [20]. For the sake of simplicity,
we shall confine our discussion to the one-dimensional case
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here. The results for the full three-dimensicnal problem can
be found in Ref. [21].

As we have mentioned, the fluxes, €, M, and N, depend
on the conserved variables, E, M, and N, implicitly through

e, v, and n. Therefore, in order to compute the Jacobi
matrix for the flux functions, we need first the elements
of another Jacobi matrix,

_ (e v,n)

u= d(E, M, N)

whose inverse can be computed directly from Eq. (2.3).

After much algebra, the nine elements of the flux function

Jacobi matrix come out as follows:

2 (2w(1 e +$53—ﬁ)’ (52)
%:% (w(l +vic?) - ””2%)’
- 0w - vy - 2 2)

Here, we have introduced the enthalpy density, w = & +
P, the speed of sound

0E /s de

where s is the entropy per baryon, and defined a common
factor Q@ = 1/w(l — v2c?).

Our next task is to diagonalize the flux matrix, as given
by (52). The ecigenvalues, arranged in increasing size,
are

np

waon’ 3)

v+

v—c
A= = .
! 1+

1 —we’

2=V, }\3 (5-4)

In contrast to the Newtonian gas dynamics case, the flow
velocity and the speed of sound are added relativistically.
The corresponding right eigenvectors are

(5.1)
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9Pp
v(1 — ve) Yon
y(v —¢) ap
) = 2y = —
r . T Yv an s
w rdp o
w aH
(5.5)
v(1 + vc)
) y(v +¢)
r
w

To find the left eigenvectors, form a 3 X 3 matrix which
has the three elements of r'” as its jth column. The left
eigenvectors will be the rows of its inverse. We find

dp
=X {_,2 +
(2c2w ( nan + ew(v c)),

it SO + —_
(Vﬂa CW(l VC))

2¢2w 2c¢ on
yh vy 1
1= (—w = ?) (5.6

G- { X (-2 _ -
1 (Zczw( L ew(v c)),

The matrix built of the right eigenvectors is invertible
as long as ¢ # 0, as its determinant is equal to —2¢> The
eigenvalues may diverge for ve = 1. However, within the
physical, causal domain, where |v| < 1 and ¢ < 1, this
cannot happen and the system is, indeed, hyperbolic.

An important issue is whether the eigenvalues change
when we move in the direction of the corresponding right
cigenvectors. We recall that the kth characteristic field is
called genuinely nonlinear if

A ok A
1. Ph, = =0 0 DR

oF aM ap 57

Otherwise, it is called linearly degenerate [18]. The gradi-
ents of the eigenvalues are complicated and not very illumi-
nating. We present only the final results for the direc-
tional derivatives



DOLEZAL AND WONG

ng—; + wg—c +e(l—c?)
. — . Pr. = — £ ]
V-V r 3 T p—s (5.8a)
1.V, = 0. (5.8b)

Just as in the non-relativistic case, the second field is always
linearly degenerate. The other two fields are either both
genuinely nonlinear or both linearly degenerate.

In the theory of relativistic shock waves [22], an im-
portant role is played by the quantity

“Normal’ matter is characterised by A > (, corresponding
to the situation where only compression shocks are thermo-
dynamically stable. A straightforward computation vields

(5.9)

A

2cn? " dc dc
an de

“wi—\Man T e T c2)>. (5.10)

Comparison with (5.8a) indicates how the shock stability
condition might be recovered from the direction taken
here by analysing the behaviour of characteristics. We shall
not pursue this point further. '

VI. IMPLEMENTATION NOTES

In this section, we address the remaining questions pertaining
to the actual implementation of the ENO schemes.

Lax—Friedrichs Blocks. Let us start with the choice of the
matrix K for the Lax—Friedrichs blocks. It follows from Eq.
(5.4) that \; < 1, since the speed of light (=1 in the units
used) is the ultimate signal speed. Setting K = 1 will thus
always work for CH-ENO-LF and, when using CW-ENQO-
LF, the unit matrix may also be used for «. As a result,
for the component-wise version, the eigenvectors are not
needed at all,

As for the local LF algorithms, we can take

Kis172 = max(|Ay], Ay ]) (6.1)
so long as we know that A from Eq. (5.9) does not change
sign on a straight line connecting w; with w;,, (in particular,
if it always stays positive), If A changes sign. we may take
K;.12 = 1, just to be on the safe side.

The signal speed is also related to the CFL restriction
imposed on the size of the time step. All the numerical
tests we have performed indicate that for the d-dimensional
case, the forward version remains stable as long as
Ar/Ax < 1/d (for any spatial order). This restriction remains
valid for the second- and third-order Runge—Kutta time
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discretizations. The fourth-order scheme becomes more
restrictive, At/Ax << 2/3d (see Ref. [11]).

Characteristic Decomposition. The eigenvalues and ei-
genvectors, given by (5.4)—(5.6), are functions of w, v;, n,
¢, and dp/on. The average matrices, R;; 1, and Aj.q/,, may
be computed at average values of these variables, 5 (w; +
w;i1), ete. This slightly modifies the definition presented
in Section [V, where they are taken at the averages of the
conserved variables, E, M;, and N here. Our simplified
version produces a faster code, since it avoids the need for
solving Eq. (3.4) repeatedly.

In the Euler gas dynamics, one can employ the Roe
linearization [23]. The advantage of using the Roe matrix
is that single shocks are “recognised’ and resolved exactly.
Unfortunately, in relativistic domain this is not practicable.
Even though we know from theory that the matrix must
exist [24], we are unable to construct it in a way which is
computationally feasible.

Flux Update. Tor the equation of state of a relativistic
ideal gas of massless particles, p = i &, Eq. (3.4) leads
to a quartic equation which can be solved analytically.
However, for anything more complicated, the resulting
equation will have to be solved numerically. This may
cost a large amount of computational time, especially for
schemes with high-order accuracy in time. This is because
the rth order Runge-Kutta TVD time discretization is an
r-step method and, hence, the local rest frame quantities
must be reconstructed r times during each complete
time update.

To solve Eq. (3.4) or (3.7}, we used the classic bisection
method, which always converges. The relation 0 << n < N
defines the limits between which the solution must lie. In
the bisection process, the argument of p could fall outside
the physical domain, £ > gy(n), as mentioned in Sec-
tion IV. As a remedy, we replace p in (3.4) or (3.7) by
Ple. n} = p(max(e, g0(n))} , 1), thus formally extending the
definition of pressure for & < gy(n). If there exists a physical
solution, the method will still converge to it, while domain
errors will be avoided in the process. We may, however,
arrive at a non-physical solution. This is not a problem
either, since any such false solution will be discarded during
the subsequent checking steps, outlined in Section TV.

We have found that 30-60% of the total computational
time is spent in updating &, v;, and n. Therefore, if a particu-
lar equation of state admits a faster converging algorithm,
it should be used. On the other hand, the flux update stage
provides an excellent opportunity for parallelism, since the
flux updates of different grid points can be done indepen-
dently. We have done some preliminary testing and the
results are encouraging.

Polar and Cylindrical Coordinates. 1In polar coordi-
nates, the equations look formally the same as their
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Cartesian counterparts, except for the additional 1/r terms,
As a result, one-dimensional algorithms may readily be
adopted for 2D problems with polar symmetry. One sensi-
tive point is perhaps handling of the r = 0 boundary. Since
for r — 0, it must be v, — 0, and thus M, — 0, we have a
fixed boundary condition for M,. During the stencil selec-
tion stage, we want to treat the points around r = 0 on an
equal footing with the other points. To this aim, we for-
mally add auxiliary points to the left of »r = 0, satisfying
mirror boundary conditions: E(—r) = E{(», M,(—r) =
—M.,(r), and N(—r) = N(r). The number of the added
points depends on the width of the stencil, i..e, on the
spatial order of the used scheme. Similarly, one can imple-
ment cylindrical coordinates for 3D problems with axial
symmetry.

Multiple-Dimensional Cases. A serious problem with
multi-dimensions is the increased storage requirements.
Among the possible compromises we would like to point
out one. We have found that the difference tables are
actually cheap to compute (relative to the total CPU time)
s0 that we may choose not to store the values—instead,
recompute them when they are needed again at the stencil
selection stage. For a third-order scheme, this decreases
the memory requirements by 60%, while the computational
time increases by less than 4%,

VII. NUMERICAL EXPERIMENTS

Before we begin, let us discuss our choice of the equation
of state. The simplest relativistic equation of state is probably
that of an ideal gas of massless particles, p = § &. The problem
is that it is already too simple, since dp/on vanishes (cf. Egs.
(5.5) and (5.6)). On the other hand, realistic nuclear equations
of state which one would use in the modelling of relativistic
heavy ion collisions are too complicated for numerical tests.
Therefore, we decided to use a model equation of state which
contains all the qualitative ingredients of any realistic situation,
while retaining relative simplicity.

To ensure the thermodynamic consistency, we start from

p=AT* + Bu’, (7.1
Here, T is the temperature, w is the chemical potential, and A
and B are adjustable parameters. In all our calculations, we use
the values B = 4, A = 3. To express p in terms of # and &, we
can compute the former directly, as n = (dp/ou)r = 2Bu. To
calculate the energy density we find first the entropy density
o = (9p/dT), = 4AT?, and then use the Gibbs-Duhem relation
g =Toc — p + pn = 3AT* + Bu’. Expressing T and p in
terms of & and » and substituting the results into (7.1) produces
Ll

- (7.2)

e
==+
P=3

)
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The speed of sound squared is given by Eq. (5.3), which
yields

2n’
8B8e +

1
1= _
c 3 + (7.3)

Omne can check that the causality domain, ¢? << 1, happens to
coincide with the physical domain, T > (), and is expressed by
the inequality & > go(n) = n’/4B.

Qur one-dimensional test-cases are mostly Riemann prob-
lems, where the initial conditions are described by two constant
states, one to the left and one to the right of the origin, respec-
tively labelled by L and R. For the model equation of state, the
exact solations to the Riemann problems can be found in a
closed (but not analytic) form. We have run the second-,
third-, and fourth-order schemes (in time and space) on most
examples. To facilitate the comparison, all tests were run on
meshes with 200 points, unless indicated otherwise.

EXAMPLE 1.
lem with

We start with a2 Riemann shock-tube prob-

W, e, n) = (0,100, 5), (v, £z, 1) =(0,10,2). (7.4
The solution is a familiar succession of a shock, contact discon-
tinuity, and rarefaction wave, separated by regions of constant
flow. In Fig. 1, the results at t = 4 for the second-order CH-
ENO-LLF scheme are shown as diamonds. The full line is the
exact solution. While there are no oscillations and no overshoot,
the discontinuities and the corners of the rarefaction wave are
smeared. The situation improves, if we use a fourth-order CH-
ENO-LLF, as shown in Fig. 2. There are still no spurious
oscillations, and only a minute overshoot in pressure and density
at the shock. The results for the component-wise version, CW-
ENO-LF, are shown in Fig. 3. While the overall resolution
remains very good, slight oscillations appear near the contact
discontinuity in the central plateau. A similar noise in an Euler
gas dynamics calculation was also reported in |[7]. The noise
in the component-wise approach may still be acceptable, as a
trade-off for the computational speed and the ease of program-
ming. The noise appears only in high-order schemes. A second-
order CW-ENO scheme (not shown) has no oscillations at all.

ExaMpPLE 2. We use a perturbed Riemann problem to docu-
memnt the capacity of the ENO method to transport smooth
structures across discontinuities. The left state is kept the same
as in our first example, but in the right state we perturb the
baryon density by a sinusoidal wave, n, = 2 + 0.3 sin (5x),
while keeping the pressure constant. In Fig. 4, the results for
the baryon density are shown at ¢ = 3 for the second- (top),
third- (center), and fourth-order (bottom} CH-ENO-LLF. For
comparison, the solid line is a third-order CH-ENO-LLF with
2000 points, which we may take as the exact solution, Apart
from fine resolution of the structures across the discontinuities,
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FIG. 1. Relativistic shock tube problem (Example 1), with second-order

CH-ENQ-LLE, 200 points, At/Ax = 0.6, The full tine corresponds to the
exact solution,

we can also see the improvement with the increasing order of
the method.

ExampLE 3.
mann problem

This is an ultra-relativistic colliding slab Rie-

(UL! EL, nl_) = (l _10_12’ 5: 1)3
(Vg £r, g} = (—(1 — 10719, 5, 1).

(1.5)

It represents a one-dimensional version of the kind of initial
conditions which appear in relativistic nuclear collision calcula-
tions. Our test uses truly extreme velocities (here, v = 700,000,
well above the range needed in applications) just to demonstrate
that there are no constraints to the aliowed values of 7.

We present only the results for the third- (Fig. 5), and fourth-
order (Fig. 6) CH-ENO-LLF schemes. Cne small but persistent
problem is the dip in baryon density at x = 0. It always consists
of only two points and does not spread further. The fourth-
order scheme has some spurious oscillations in pressure and
density; however, there is still no overshoot in velocity. The
fast onset of the correct solution is shown in Fig. 7, where we
present a surface plot of the baryon density as a function of
time and space. This computation was performed on a grid
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with 50 spatial points and 50 time slices, using a third-order
CH-ENO-LLF. Here, we can also see how the dip in the mid-
dle forms.

In our numerical code, we have not included any special
provision to treat extremely large velocities. As a result, we
will eventually hit the numerical precision barrier, when the
velocity becomes indistinguishable from unity. A remedy for
this extreme situation is simple. Instead of using the velocity
itself, one may work with the spatial components of the 4-
velocity U; = vy, using y = (I + U%)" . Nothing seems to
indicate that the ENO algorithm itself imposes any limit to the
allowed values of vy.

ExamprLE 4. Qur two-dimensional test case is based on our
shock tube example. One might call it a shock cylinder problem,
for the initial conditions read

e=100,n=5 forx?+y*<25
(7.6)
e=10, n=2 forx*+y'=25%

and v = () always. Instead of the left and right states, now we
have *‘inside’” and “‘outside’” ones. Because of the problem’s
symmetry, we only have to calculate one quadrant using *‘per-

4 -2 0 2 4
60[ ' i ' ' ' i
a0} ]
1
20 N
[ Pressure L
0 } . + + t
o4k
02
0.0 ’ Velocity
6 ' t
Baryon Density 1
-4 -2 0 2 4

FIG. 2, Same as Fig. 1, except with fourth-order characteristic ENO-LLF
and Ar/Ax = (.5,
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FIG. 3. Same as Fig. 1, except with fourth-order component-wise ENO-
LLF and At/Ax = 0.5,

pendicular-periodic’” boundary conditions. Apart for testing
the non-oscillatory behaviour in two dimensions, we are also
interested in the degree of isotropy of the numerical solution.

The results for a two-dimensional, third-order CH-ENO-LLF
on a 200 X 200 grid are shown in Fig. 8. A radial cut at x =
0 and ¢+ = 3 is shown in diamonds. To check the correctness
of the two-dimensional computation, we also present the results
obtained using a third-order CH-ENO-LLF in polar coordinates
with 2000 points, shown in a full line. We see a very good
agreement, with the exception of a few points near the origin,
where the two-dimensional solution decays too rapidly. The
flow structure is similar to the one-dimensional cases. Again,
there is a shock, contact discontinuity, and rarefaction wave,
However, the radial profile of the rarefaction wave is different,
and the flow is not constant in the intermediate regions, since
the radial fluxes vary as 1/r.

To check the isotropy (grid aliasing) of the method, we
inspect cuts done at different angles with respect to the gridlines,
In Fig. 9, the error in baryon density is plotted, for cuts per-
formed at angles 8 = 0°, 20°, 30°, and 45°. Since they are all
very close to one another, there is no point in identifying them
by different line styles. The vertical dotted lines indicate the
positions of the top and bottom of the rarefaction wave, the
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comntact discontinuity, and the shock. The oscillations on some
of the lines were caused by the slicing algorithm, which uses
a simple nearest-neighbour approximation.

ExaMpPLE 5.  Since the main motivation for our present work
is modelling relativistic nuclear collisions, we present results
of such a computation. The case chosen is a stationary target
S—Au collision. The laboratory-frame kinetic energy of the
incident sulphur nucleus is £ = 10 GeV per nucleon, with the
corresponding Lorentz factor y = 10.7, while the gold nucleus
is at rest in the laboratory, We assume that the collision is
central, that is, the impact parameter is zero. As a result, the
problem is axially symmetric and we can perform the calcula-
tion in cylindrical coordinates.

The computation was done in the equal-speed reference
frame. We used a third-order CH-ENO-LF method on a grid
with 600 points along the collision axis direction and 300 points
in the radial direction. For the nuclear equation of state we
took the model from Ref. [25]. Figure 10 shows snapshots of
the baryon density contours at levels » = 0.1, 0.2, .., 1.1 fim™,
taken at the central slice. The baryon density in the initial nuclei
(nuclear ground state density) is ny = 0.15 fm™.

vl bl

=
T
1

NI IS WA AT

s by Ly gl an

L B Ly o

[ o3
T

-4 -2 0 2 4
FIG. 4. Perturbed relativistic shock tube problem (Example 2), plot of
baryon density with second- (top), third- (center), and fourth-order (bottorm)

CH-ENO-LLF, 200 points, A#/Ax = 0.5, The solid line is a third-order CH-
ENO-LLF with 2000 points.
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FIG. 5. Ultrarelativistic colliding slab (Example 3). with third-order CH-

ENO-LLF, 200 points, At/Ax = 0.5. The full line 1s the exact solution.

In the initial state, the two spherical nuclei are Lorentz-
contracted along the collision axis. After the impact, two com-
pression shock waves form (at ¢ = 1, 2), giving rise to a hot
and dense region in between. After the outer edge of the sulphur
nucleus crosses the shock, a fast expansion of the highly excited
matter into vacuum begins (+ = 3, 4). The same happens when
the other shock reaches the outer edge of the gold nucleus
(t = 5, 6). Note also the two crescents of cold, *‘spectator™
nuclear matter on the sides, surviving until £ = §.

Taking the cylindrical calculation as an *‘exact solution’” for
comparison, we present in Fig. 11 the results for the same prob-
lem computed in Cartesian coordinates, using a third-order CH-
ENO-LF on a three-dimensional mesh with 75 X 75 X 75 points.
While there is obviously certain loss in the resolution, the global
features of the flow are borne out rather well. This gives us confi-
dence in applying three-dimensional ENO schemes for non-cen-
tral (peripheral) collisions, where we can no longer reduce the
dimensionality by using cylindrical coordinates.

All calculations were carried out on a 99 MHz HP%000/
735 workstation, where, for example, the 3D nuclear collision
problem took ess than six hours to complete.

VIII. CONCLUSIONS

We have implemented the high-order, finite differencing
ENO schemes to obtain numerical solutions to the equations
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FIG. 6. Same as Fig. 5, except with fourth-order CH-ENQ-LLF.

of relativistic hydrodynamics of a perfect fluid. The present
algorithm is applicable to any number of space dimensions and
arbitrary equation of state. We have performed numerical tests
on schemes up to the fourth-order accuracy in time and space
and found consistently good resuits. This extends results pre-
viously established for the Euler gas dynamics. The overshoot-
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FIG. 7. Surface plot of the baryon density history (colliding slab problem
of Example 3), with third-order CH-ENO-LLF with 50 spatial points, 50 time
levels, and At/Ax = 0.5,
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FIG.8. The “‘shock cylinder’” problem {Example 4). Cut at x = 0 is shown
for a solution obtained using third-crder CH-ENO-LLF in two-dimensional
Cartesian coordinates with 200 X 200 points and Ar/Ax = At/Ay = 0.3. The
solid line was computed in polar coordinates using third-order CH-ENO-LLF
with 2000 points.

free, non-oscillatory shock handling in the ENO schemes is an
asset that is even more important in the relativistic regime. This
property is carried out completely from the Newtonian case.
Because of the high resolution, we believe that the ENO
schemes will provide an effective approach to numerical solu-
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FIG. 9. Error in baryon density in the *‘shock cylinder'” problem {Example
43, for radial cuts done at angles & = 0°, 20°, 30°, and 45° with respect to the
gridlines. All the angles are shown in full line.
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FIG. 10. Central S—Au collision at 10 GeV/A incident energy (Example
5). The results were obtained using third-order CH-ENO-LF in cylindrical
coordinates with 600 points along the collision axis (vertical) and 300 points
in the radial direction with At/Az = At/Ar = 0.3. The contours of baryon
density atlevels n = 0.1,0.2, ..., 1.1 fm™* are shown, as viewed from an equal-
speed frame. The time and distance are given in fm (10~%m).
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FIG.11. The same problem as in Fig. 10, computed using third-order CH-
ENO-LF in three-dimensional Cartesian coordinates with 75 X 75 X 75 points
and A#/Ax; = 0.2 for all spatial directions,
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tions of hydrodynamic models of relativistic nuclear collisions.
The feasibility of such an application is demonstrated by the
nuclear collision catculations presented.

We have tested only the “*standard’”’ finite differencing ENO
scheme by Shu and Osher {11]. Modified algorithms exist, for
example, the artificial compression method for sharpening of
contact discontinuities by Yang [26], a modified stencil selec-
tion algorithm with an adjustable biasing towards central differ-
encing [27], or hybrid methods [28], combining central differ-
encing in the smooth regions with the ENO method near
discontinuities. We do not expect any difficulty in implementing
these modified schemes, where they are desired.

In closing we remark that extension to a viscous flow or to
a flow with heat transfer is by no means a simple matter, In
contrast to their Newtonian counterparts, relativistic Navier—
Stokes equations are second-order and nonlinear in time, as,
e.g., terms proportional to dv,/dt appear on the right-hand side
of (2.3) [16]. An entire new class of difficulties arises with
such a situation.
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